GRINTECH

GRIN Rod Lenses – Numerical Aperture 0.2 – for high-performance collimation

with optimized gradient index profile for compensation of higher-order spherical aberrations and better beam quality

Gradient index lenses for fiber coupling and beam shaping of laser diodes

Diameter	Pitch P	Working	Numerical	Lens	Focal	Gradient	Refractive index	Wavelength	Product code
(mm)		distance	Aperture	length	length	constant	at the center of	λ (nm)	
		s (mm)	NA	zı (mm)	f (mm)	g (mm ⁻¹)	the profile no		
	0.25	0	0.20	6.04	2.52	0.260	1.524	670	GT-CFRL-100-025-20-NC (670)
1.00	0.25	0	0.20	6.05	2.53	0.259	1.521	810	GT-CFRL-100-025-20-NC (810)
1.00	0.25	0	0.19	6.32	2.65	0.248	1.515	1550	GT-CFRL-100-025-20-NC (1550)
	0.24	0.18 - 0.16*	0.19	6.08	2.66	0.260 - 0.258*	1.524 - 1.515*	670 -1550	GT-CFRL-100-024-20-NC (1550)
1.80	0.25	0	0.19	11.06	4.62	0.141	1.524	670	GT-CFRL-180-025-20-NC (670)
	0.25	0	0.19	11.08	4.64	0.140	1.521	810	GT-CFRL-180-025-20-NC (810)
	0.25	0	0.19	11.38	4.78	0.138	1.515	1550	GT-CFRL-180-025-20-NC (1550)
	0.24	0.31 - 0.26*	0.19	10.99	4.79	0.141 - 0.138*	1.524 - 1.515*	670 -1550	GT-CFRL-180-024-20-NC (1550)

*: depending on wavelength

- Working distance, design wavelength and lens length deviating from these standards are available on request
- ZEMAX files can be DOWNLOADed from our website
- For tolerances, handling and storage see page 26

optimized

- \cdot Wavefront RMS @ 635 nm < 0.07
- diffraction limited properties
- higher order spherical aberrations are corrected
- for high-performance applications
- (e.g. collimators with $M^2 < 1.1$)

measured wavefront error: 0.055Å RMS

GRIN rod lenses are offered without antireflection coatings as standard.

Antireflection coatings (for incidence angles of 0 \dots 10° corresponding to measurements on a reference substrate) can be offered:

- Coating Code: NC: no coating (reflection loss approx. 12 %) standard
 - C1: λ = 400 ... 700 nm, R < 1.0 %
 - C2: λ = 800 ... 1000 nm, R < 0.5 %
 - C5: λ = 1310 ... 1550 nm, R < 0.5 %

One - sided coatings are available on request.

Order example:

GT – CFRL -	- 100 - 025 - 20 - NC - (670)						
GT	GRINTECH						
CFRL	Focusing Rod Lens for high-performance collimation						
100	Diameter: 1.0, 1.8 mm						
025	Pitch: 0.25 or 0.24						
20	NA: 0.20						
NC	Coating Code: NC, C1, C2 or C5						
(670)	Design Wavelength						

Variations due to modifications of the production process are possible. It is the user's responsibility to determine suitability for the user's purpose.

* not available for following applications :

Please note our partnership with Inscopix as our exclusive distributor for the field of non-confocal, single photon epi-fluorescence imaging for neuroscience applications in non-humans (see page 8).

GRINTECH

Tolerances / Handling Instructions

Tolerances:

For of our single lenses we have the following fabrication tolerances and quality criteria:

Tolerances:

Surface quality: $5 / 3 \times 0.025$; L 3×0.005 ; E 0(defined by DIN ISO 10110-7:2000-02). The surface quality is defined within 90 % of the lens diameter. Outside of this area defects are allowed.

Storage and Handling of Lenses

Storage

GRIN lenses and lens systems should be stored in a dry environment. For short term storage, the plastic box or foam packing in which the lenses are shipped will provide adequate storage.

Recommended storage temperature: -20°C - 80°C.

Storage boxes should ensure that the lenses do not touch each other to prevent chipping and scratches. Best is to use the original box.

Handling

Lenses should be carefully handled with plastic tweezers, preferably those with a tapered end. Lenses should be picked up out of their individual compartments by firmly holding each on its side cylinder surface (not the polished ends). Especially small sized lenses may stick to the lens box material and can be lost during removal.

Cleaning

If it is necessary to clean the lens surfaces due some dust or other contaminant which may impair the optical performance. GRINTECH generally recommends the use of ethyl alcohol as a cleaning solvent, maybe combined with some smooth lintfree lens cleaning tissue.

Acetone may also be used, but it should be pure enough, otherwise it might leave some residue on the lens surface.