Publikationen

·        

Meng, G., Y. Liang, S. Sarsfield, W. C. Jiang, R. Lu, J. T. Dudman, Y. Aponte, and N. Ji. (2019). 'High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo', Elife, 8. 


Chen, M., D. Wen, S. Huang, S. Gui, Z. Zhang, J. Lu, and P. Li, (2018), 'Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy', Opt Lett, 43: 5627-30.

 

Seo, Y. H., K. Hwang, and K. H. Jeong, (2018), '1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner', Opt Express, 26: 4780-85.

 

Zirak, P., G. Matz, B. Messerschmidt, T. Meyer, M. Schmitt, J. Popp, O. Uckermann, R. Galli, M. Kirsch, M. J. Winterhalder, and A. Zumbusch, (2018), 'Invited Article: A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view', APL Photonics, 3: 092409.

 

Matz, Gregor, Bernhard Messerschmidt, Werner Göbel, Severin Filser, Christian S. Betz, Matthias Kirsch, Ortrud Uckermann, Marcel Kunze, Sven Flämig, André Ehrhardt, Klaus-Martin Irion, Mareike Haack, Mario M. Dorostkar, Jochen Herms, and Herbert Gross, (2017), 'Chip-on-the-tip compact flexible endoscopic epifluorescence video-microscope for in-vivo imaging in medicine and biomedical research', Biomedical Optics Express, 8: 3329

 

Grewe, B. F., J. Grundemann, L. J. Kitch, J. A. Lecoq, J. G. Parker, J. D. Marshall, M. C. Larkin, P. E. Jercog, F. Grenier, J. Z. Li, A. Luthi, and M. J. Schnitzer, (2017),  'Neural ensemble dynamics underlying a long-term associative memory', Nature, 543: 670-75.

 

Li, Y., A. Mathis, B. F. Grewe, J. A. Osterhout, B. Ahanonu, M. J. Schnitzer, V. N. Murthy, and C. Dulac, (2017), 'Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice',   Cell, 171: 1176-90 e17.

 

Liang, Wenxuan, Gunnsteinn Hall, Bernhard Messerschmidt, Ming-Jun Li, and Xingde Li, (2017), 'Nonlinear optical endomicroscopy for label-free functional histology in vivo', Light: Science & Applications, 6: e17082.

 

Lukic, Aleksandar, Sebastian Dochow, Hyeonsoo Bae, Gregor Matz, Ines Latka, Bernhard Messerschmidt, Michael Schmitt, and Jürgen Popp, (2017), 'Endoscopic fiber probe for nonlinear spectroscopic imaging', Optica, 4: 496.

 

Sherlock, B. E., J. E. Phipps, J. Bec, and L. Marcu, (2017), 'Simultaneous, label-free, multispectral fluorescence lifetime imaging and optical coherence tomography using a double-clad fiber', Opt Lett, 42: 3753-56.

 

Zong, W., R. Wu, M. Li, Y. Hu, Y. Li, J. Li, H. Rong, H. Wu, Y. Xu, Y. Lu, H. Jia, M. Fan, Z. Zhou, Y. Zhang, A. Wang, L. Chen, and H. Cheng, (2017), 'Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice', Nat Methods, 14: 713-19.

 

Matz, G., B. Messerschmidt, and H. Gross; (2016); 'Design and evaluation of new color-corrected rigid endomicroscopic high NA GRIN-objectives with a sub-micron resolution and large field of view', Opt Express, 24: 10987-1001.

 

Yin, C., A. K. Glaser, S. Y. Leigh, Y. Chen, L. Wei, P. C. Pillai, M. C. Rosenberg, S. Abeytunge, G. Peterson, C. Glazowski, N. Sanai, M. J. Mandella, M. Rajadhyaksha, and J. T. Liu, (2016), 'Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology', Biomed Opt Express, 7: 251-63.

 

Ahn, J., K. Choe, T. Wang, Y. Hwang, E. Song, K. H. Kim, and P. Kim; (2015), 'In vivo longitudinal cellular imaging of small intestine by side-view endomicroscopy', Biomed Opt Express, 6: 3963-72.

 

Bocarsly, M. E., W. C. Jiang, C. Wang, J. T. Dudman, N. Ji, and Y. Aponte, (2015), 'Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain', Biomed Opt Express, 6: 4546-56.

 

Antonini, A., C. Liberale, and T. Fellin, (2014), 'Fluorescent layers for characterization of sectioning microscopy with coverslip-uncorrected and water immersion objectives', Opt Express, 22: 14293-304.

 

Do, D., H. Yoo, and D. G. Gweon, (2014), 'Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator', J Biomed Opt, 19: 066010.

 

Huland, D. M., M. Jain, D. G. Ouzounov, B. D. Robinson, D. S. Harya, M. M. Shevchuk, P. Singhal, C. Xu, and A. K. Tewari, (2014), 'Multiphoton gradient index endoscopy for evaluation of diseased human prostatic tissue ex vivo', J Biomed Opt, 19: 116011.

 

Lecoq, J., J. Savall, D. Vucinic, B. F. Grewe, H. Kim, J. Z. Li, L. J. Kitch, and M. J. Schnitzer, (2014), 'Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging', Nat Neurosci, 17: 1825-9.

 

Meinert, T., N. Weber, H. Zappe, and A. Seifert, (2014) 'Varifocal MOEMS fiber scanner for confocal endomicroscopy', Opt Express, 22: 31529-44.

 

Ziv, Y., L. D. Burns, E. D. Cocker, E. O. Hamel, K. K. Ghosh, L. J. Kitch, A. El Gamal, and M. J. Schnitzer, (2013), 'Long-term dynamics of CA1 hippocampal place codes', Nat Neurosci, 16: 264-6.

 

Belanger, E., J. Crepeau, S. Laffray, R. Vallee, Y. De Koninck, and D. Cote, (2012), 'Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy', J Biomed Opt, 17: 021107.

 

Huland, D. M., C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, and C. Xu, (2012),  'In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems', Biomed Opt Express, 3: 1077-85.

 

Wang, C., and N. Ji, (2012), 'Pupil-segmentation-based adaptive optical correction of a high-numerical-aperture gradient refractive index lens for two-photon fluorescence endoscopy', Opt Lett, 37: 2001-3.

 

Barretto, R. P., T. H. Ko, J. C. Jung, T. J. Wang, G. Capps, A. C. Waters, Y. Ziv, A. Attardo, L. Recht, and M. J. Schnitzer, (2011), 'Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy', Nat Med, 17: 223-8.

 

Ghosh, K. K., L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, (2011), 'Miniaturized integration of a fluorescence microscope',

 Nat Methods, 8: 871-8.

 

Rivera, D. R., C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, (2011), 'Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue', Proc Natl Acad Sci U S A, 108: 17598-603.

 

Chen, M., C. Xu, and W. W. Webb, (2010), 'Endoscope lens with dual fields of view and resolutions for multiphoton imaging', Opt Lett, 35: 2735-7.

 

Barretto, R. P., B. Messerschmidt, and M. J. Schnitzer, (2009), 'In vivo fluorescence imaging with high-resolution microlenses', Nat Methods, 6: 511-2.

 

Wu, Y., Y. Leng, J. Xi, and X. Li, (2009), 'Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues', Opt Express, 17: 7907-15.

 

Engelbrecht, C. J., R. S. Johnston, E. J. Seibel, and F. Helmchen, (2008), 'Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo', Opt Express, 16: 5556-64.

 

Han, S., M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, (2008), 'Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection', J Biomed Opt, 13: 020505.

 

Le Harzic, R., M. Weinigel, I. Riemann, K. Konig, and B. Messerschmidt, (2008), 'Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens', Opt Express, 16: 20588-96.

 

Llewellyn, M. E., R. P. Barretto, S. L. Delp, and M. J. Schnitzer, (2008), 'Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans', Nature, 454: 784-8.

 

Deisseroth, K., G. Feng, A. K. Majewska, G. Miesenbock, A. Ting, and M. J. Schnitzer, (2006), 'Next-generation optical technologies for illuminating genetically targeted brain circuits', J Neurosci, 26: 10380-6.

 

Flusberg, B. A., J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, (2005), 'In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope', Opt Lett, 30: 2272-4.

 

 

Jung, J. C., A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, (2004), 'In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy', J Neurophysiol, 92: 3121-33.